eCB signaling-microbiota partnership in ASD	bjects /System model	Major Effects		Study
Gut microbiota dysbiosis	Human HT-29 epithelial cells	Dysregulates the intestinal eCB system	+	Rousseaux et al., 2007
Lactobacillus acidophilus supplementation		Increased intestinal cells CB2 receptor mRNA expression	1	
eCB and PEA faecal levels	General population	Prediction of the association between gut microbial diversity and anhedonia		Minichino et al., 2021
Prebiotic treatment: mucin-degrading Gram- negative bacterium	Children with ASD	A. muciniphila supplementation improves gut permeability/increases 2-AG intestine levels	1	Everard et al., 2013
Prebiotic treatment: mucin-degrading Gram- negative bacterium	Children with ASD	A. muciniphila supplementation provides beneficial effects dependent on eCB-derived lipids of the 2- AcGs family	1	Depommier et al., 2021
Mucin-degrading Gram- negative bacterium	Children with ASD	Decreased A. muciniphila abundance	1	Wang et al., 2011
Mucin-degrading Gram- negative bacterium	Children with ASD	Increased A. muciniphila abundance	1	De Angelis et al., 2013

Ultramicronized PEA + Luteolin coadministration	ASD-like BTBR mouse model	Decreased ASD- like repetitive behavior/ pro- inflammatory cytokine production/ intestinal permeability/ Increased sociability	1	Cristiano et al., 2018
B. longum probiotic mix (including Lactobacillus acidophilus and B. infantis) supplementation	zebrafish	Increase intestinal mRNA expression of Cnr1 and Cnr2 genes Decrease of faah and mgll gene expression	1	Gioacchini et al., 2017
B. fragilis supplementation	ASD-like MIA model	Improves social- communicative deficits/ integrity intestinal barrier	1	Hsiao et al., 2013
Bifidobacterium longum	Children with ASD	ASD depletion of B. longum Decrease butyrate- producing bacteria	1	Coretti et al., 2018 Sugahara et al., 2015
Butyrate treatment	ASD-like VPA and BTBR models	Improvement memory and social behavior	1	Takuma et al., 2014 Kratsman et al., 2016
Butyrate and butyrate- producing bacteria	Children with ASD	Lower levels of butyrate and abundance of Lachnospiraceae	1	Liu et al., 2013

Butyrate treatment (concentration-dependent effects)	Epithelial cell line Caco-2	Decrease eCBs synthetizing enzymes (i.e., NAPE-PLD; DAGL)	Hwang et al., 2021
eCB system and signaling	Children with ASD vs ASD- like VPA murine model	eCB signaling FAAH and MAGL increased expression Decrease of 2-AG serum levels	Zou et al., 2021
Vitamin D	Vitamin D deficiency pregnancy Vitamin D supplementati on	Risk of ASD Improve expression ASD symptoms	Lee et al., 2021 Principi and Esposito, 2020
PEA and vitamin D	Epithelial cell line Caco-2	CB2 receptor activation	Morsanuto et al., 2020
Microglial cells morphology	ASD subjects	Changes in microglial cells phenotype (e.g., decreased ramified microglia)	Lee et al., 2017
PEA availability	Primary microglia cell culture	Increase microglial phagocytic/ Migratory activity	Guida et al., 2017
CBDV supplementation	ASD-like VPA murine model	Microglia activation/ Decrease deficit social behavior/ Upregulation CB2 RS	Zamberletti et al., 2019 I
Bacteroides	ASD subjects	Reduced levels	Cao et al., 2021

Bacteroides	eCB-like production	High affinity GPR119 (2-OG and OEA)	1	Cohen et al., 2017
Systemic inflammation	ASD-like MIA murine mice	Segmented filamentous bacteria (SFB) promotes TH17 intestinal	1	Farkas et al. 2015
	Mice lacking SFB	biogenesis TH17-induced increase IL17-a plasma levels	1	Kim et al., 2017
		Failure of MIA- induced ASD-like symptoms	1	
AEA, Δ9-THC, CBD administration	TH17-driven diseases	Microglia activation/	1	Kozela et al., 2019;
		Decrease deficits social behavior/ Upregulation CB2	1	Jackson et al., 2014
		Rs	-	
Lactobacillus plantarum supplementation	Cecum and colon samples	Decrease SFB abundance	1	Fuentes et al., 2008
SCFAs supplementation Physical exercise	Gut microbiota- eCB system interaction	Anti-inflammatory activity via eCB signaling Increase SCFA-		Vijay et al., 2021
Involcat exercise		dependent AEA, OEA and PEA levels	1	
		AEA and OEA correlation with SCFAs receptor expression		

 $\begin{tabular}{ll} \textbf{TABLE 2} \\ \textbf{Summary table of the key studies involving eCB signaling and gut microbiota crosstalk in both patients with ASD and ASD-like animal models.} \\ \end{tabular}$